Control Measure to Reduce Emissions from Off-Road Large Spark-Ignition (LSI) Engines

June 23-24, 2005: Fresno, California

What are "Large Spark-Ignition Engines"?

- Gasoline and LPG
- Older automotive technology
- Greater than 25 hp and 1 liter
- Mainly industrial equipment
- Typical life of 7-11 years

Forklifts

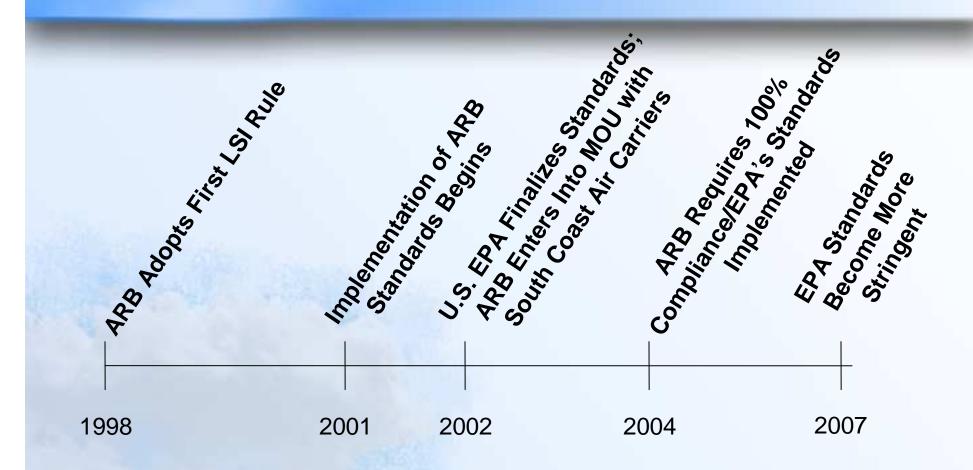
- Forklifts
- Airport ground support

- Forklifts
- Airport ground support
- Sweepers/scrubbers

- Forklifts
- Airport ground support
- Sweepers/scrubbers
- Industrial tow tractors

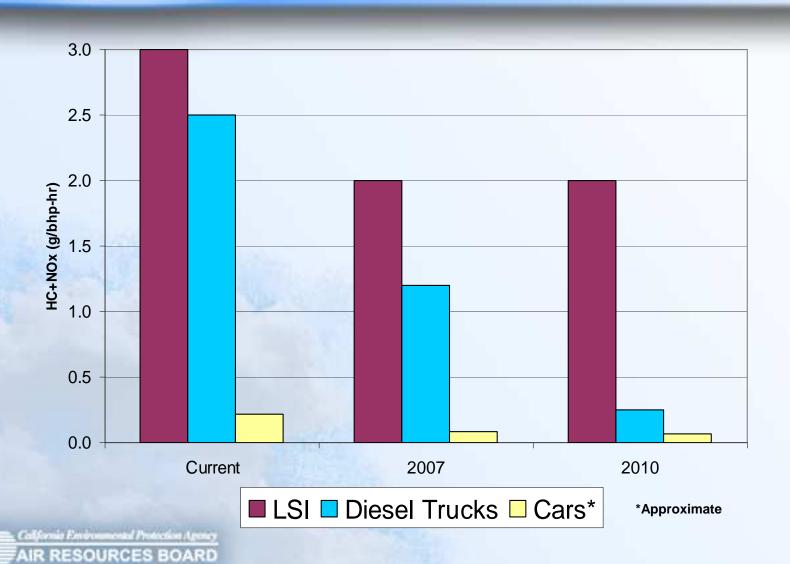
- Forklifts
- Airport ground support
- Sweepers/scrubbers
- Industrial tow tractors
- Generator sets

- Forklifts
- Airport ground support
- Sweepers/scrubbers
- Industrial tow tractors
- Generator sets
- Turf care equipment



- Forklifts
- Airport ground support
- Sweepers/scrubbers
- Industrial tow tractors
- Generator sets
- Turf care equipment
- Other non-preempted industrial, construction, and agricultural equipment

LSI Emissions


- 88,000 LSI engines
 - 40,000 forklifts
- HC+NOx emissions:
 - 70 tons per day in 2004
 - about 5 percent of off-road mobile source emissions

History of Control

Comparative Emissions

12

2003 State Implementation Plan Commitment

- SIP Measure LSI-1
 - harmonize with 2007 EPA new engine standards
- SIP Measure LSI-2C
 - consolidates two proposals:
 - Existing engines reduce emissions by 80%
 - New requirements incorporating zero- and near-zero-emission technologies
- Goal reduce statewide HC+NOx emissions
 - 6 to 13 tons per day by 2010

Elements of the Proposal

New Engine Standards

In-Use Fleet Average

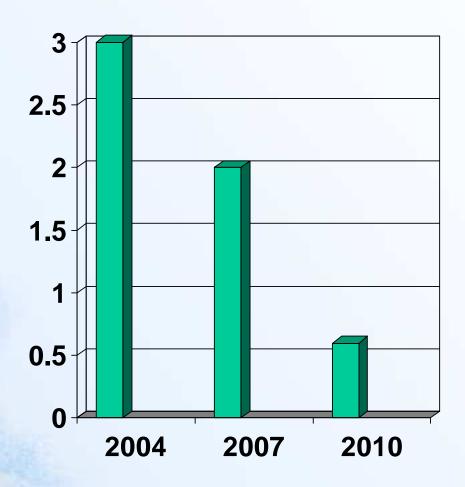
LSI Rulemaking

New Engine Test Procedures Retrofit Verification Procedures

Elements of the Proposal

New Engine Standards

In-Use Fleet Average


LSI Rulemaking

New Engine Test Procedures Retrofit Verification Procedures

Proposed New Engine Standards

HC + NOx Standards

- 2.0 g/bhp-hr HC+NOx in 2007
 - Aligns with EPA
- 0.6 g /bhp-hr HC+NOx in 2010
- Draw upon automotive emission control technology

Technology Comparison

	2004	2010	Typical
	Forklift	Forklift*	2004 Car
Fuel System	Carb/TBI	TBI/SMPI	SMPI
Catalyst Volume (% of engine)	40%	80%	100%
Grams of Pt	0.77	> 2	> 2
Grams of Rh	0.19	> 0.4	~ 2
Cert. Emissions (HC+NOx g/bhp-hr)	1	0.1 – 0.3	0.06**
Emission Std. (HC+NOx g/bhp-hr)	3.0	3.0	0.15**

^{*}Based on cleanest model available today

^{**}Approximate

Optional Manufacturer Lower Emission Standard

Optional Tiered Certification

- Model year 2007 and later
- Early use of available clean technologies
- Certify to 1.5, 1.0, 0.6, 0.4, 0.2 and 0.1 g/bhp-hr
- Credits
- Possible Carl Moyer funds

Elements of the Proposal

New Engine Standards

In-Use Fleet Average

LSI Rulemaking

New Engine Test Procedures Retrofit Verification Procedures

New Engine Test Procedures Beginning in 2007

- Regulatory proposal incorporates federal test procedures and compliance provisions with minor modifications
 - labeling, warranty, durability, field testing
- U.S. EPA released revised requirements on June 3, 2005
- Staff recommends that the ARB align with new EPA procedures where possible
 - provide ample time for review and comment
 - notify Board of any significant issues

Elements of the Proposal

New Engine Standards

In-Use Fleet Average

LSI Rulemaking

New Engine Test Procedures Retrofit Verification Procedures

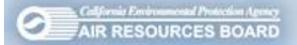
Fleet Average Concept

- Applies to
 - operators of forklifts, sweepers/scrubbers, tow tractors, and airport ground support equipment
 - owned equipment; rental/lease greater than one year
- Achieves declining fleet average emission level
 - Retrofit or replace uncontrolled LSI equipment by 2009
 - Replace some LSI with cleanest LSI or zero-emission equipment
- Standards vary by fleet size and type of fleet

Fleet Average Standards

(Fleet Average Emission Level in Grams HC+NOx)

LSI Fleet Type	Number of units	By 1/1/2009	By 1/1/2011	By 1/1/2013
Large fleet – forklift component	26 +	2.4	1.7	1.1
Mid-size fleet – forklift component	4-25	2.6	2.0	1.4
Non-forklift fleet NEW!	N/A	3.0	2.8	2.6
Small fleet	1-3	No uncontrolled equipment by 1/1/201		


Retrofit Technologies

- Uncontrolled Equipment = High Emissions
 - All pre-2001 and about half of 2001-2003 engines
 - A single uncontrolled forklift operating three shifts = cleanest certified car over its entire life
- Retrofit Technologies Readily Available
 - Available since mid-1990's
 - Applicable to many pre-2001 engines
 - Catalyst and air/fuel feedback control
 - \$3,000 installed
 - Improved fuel economy

Purchase New Engines/Equipment

- Replace 12 g engines
- Standards for new engines
 - 3.0 g 2004-2006
 - 2.0 g 2007-2009
 - 0.6 g 2010 and beyond
 - Optional standards
- Readily available / cost-effective emission control technologies
- Cost of a new forklift
 - **-~\$20,000**

Purchase Electric Equipment

Electric

- Commercially available
- Increasingly capable
- Cost is \$2000 5000 more than a comparable LSI lift
- Lower life cycle costs than
 LSI forklifts
 - (~\$1.00 per operating hour)

Fuel Cells

 Multiple demonstrations underway

Forklift Model Year	Percent of fleet	2005
1996	20	12
1998	20	12
2000	20	12
2002	20	12
2004	20	3
Fleet Av	10.2	
Standard (la	n/a	

Forklift Model Year	Percent of fleet	2005	2009
1996	20	12	0
1998	20	12	0.6
2000	20	12	3
2002	20	12	3
2004	20	3	3
Fleet Average		10.2	1.9
Standard (la	Standard (large fleet)		2.4

Forklift Model Year	Percent of fleet	2005	2009	2011
1996	20	12	0	0
1998	20	12	0.6	0.6
2000	20	12	3	0.6
2002	20	12	3	3
2004	20	3	3	3
Fleet Average		10.2	1.9	1.4
Standard (la	Standard (large fleet)		2.4	1.7

Forklift Model Year	Percent of fleet	2005	2009	2011	2013
1996	20	12	0	0	0
1998	20	12	0.6	0.6	0.6
2000	20	12	3	0.6	0.6
2002	20	12	3	3	0.6
2004	20	3	3	3	3
Fleet Av	erage	10.2	1.9	1.4	1.0
Standard (la	rge fleet)	n/a	2.4	1.7	1.1

Retrofit

New Engine

Forklift Model Year	Percent of fleet	2005
1996	20	12
1998	20	12
2000	20	12
2002	20	12
2004 20		3
Fleet Av	10.2	
Standard (la	rge fleet)	n/a

Forklift Model Year	Percent of fleet	2005	2009
1996	20	12	2.0
1998	20	12	0.6
2000	20	12	3
2002	20	12	3
2004	20	3	3
Fleet Average		10.2	2.3
Standard (la	rge fleet)	n/a	2.4

Retrofit

New Engine

Forklift Model Year	Percent of fleet	2005	2009	2011
1996	20	12	2.0	2.0
1998	20	12	0.6	0.6
2000	20	12	3	0.6
2002	20	12	3	0.6
2004	20	3	3	3
Fleet Average		10.2	2.3	1.4
Standard (la	rge fleet)	n/a	2.4	1.7

Retrofit

New Engine

Forklift Model Year	Percent of fleet	2005	2009	2011	2013
1996	20	12	2.0	2.0	2.0
1998	20	12	0.6	0.6	0.6
2000	20	12	3	0.6	0.6
2002	20	12	3	0.6	0.6
2004	20	3	3	3	0.6
Fleet Av	erage	10.2	2.3	1.4	0.9
Standard (la	rge fleet)	n/a	2.4	1.7	1.1

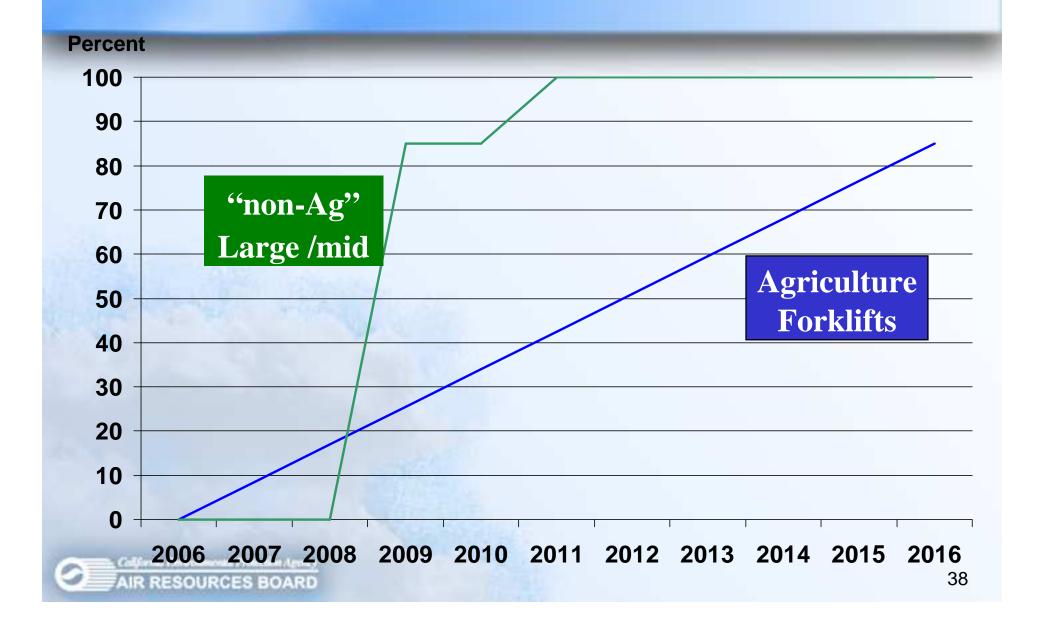
Retrofit

New Engine

Proposal for Non-Forklift Fleets

- New useful life information
 - Ground Support Equipment
- Higher fleet average standards
 - for 2011 and 2013
 - reflect longer useful life data

Proposal for Small Fleets


- Fleets of 1-3 forklifts
- No uncontrolled equipment by January 1, 2011
- Retrofit or replacement
- Low usage exemption
 - 250 or fewer hours per year
 - until January 1, 2013

Agricultural Operations - Alternative Proposal

- Unique economics of agricultural industry
- Applicable to owned forklifts only
- Longer time for clean-up
- Retrofit, retire, or replace ten percent of uncontrolled equipment each year for ten years
- No fleet average (achieve 3.0 g by 2016)
- Lower cost slow phase-in allows purchase of used
 3.0 g equipment
- Hours of use and specialty equipment exemption

Phase-in Schedule

Agricultural Operations - Affected Population

- ~ 2,300 owned forklifts
- ~ 960 replaced or exempt
 - natural turnover (conservatively 3 percent/year)
 - limited hours-of-use and specialty equipment exemptions
- ~ 1,330 remaining forklifts cleaned-up through
 - < 1/3 low-cost retrofit 2007-2010
 - < 1/3 moderate-cost replacement 2010-2012
 - > 1/3 low-cost replacement 2013-2016

Agricultural Operations - Costs

- Retrofits ~ \$3,000 each before fuel savings:
 - fuel savings = \$400/year with typical usage
 - primarily in calendar years 2007 2010
- Moderate cost used 3.0 gram forklift \$5,000-\$10,000
 - fuel savings = \$400/year with typical usage
 - calendar years 2010 2012
- Low cost used 3.0 gram replacement < \$4,000
 - fuel savings = \$400/year with typical usage
 - calendar years 2013 2016

Agricultural Operations - Typical Fleet - 17 Owned Forklifts

- 7 forklifts reduced through natural turnover or limited hour-of-use or specialty exemptions
- 3 retrofitted
- 3 moderate cost replacements
- 4 low cost replacements

Agricultural Operations - Small Fleet - 3 Owned Forklifts

- No requirements until fourth year
- Assume no forklifts comply through natural turnover or exemptions
- 1 retrofitted
- 2 low cost replacements

Agricultural Operations - Costs

- Average Ag Fleet 17 forklifts
 - capital cost: \$4,700 per year
 - fuel savings: \$2,200 per year
- Small Ag Fleet 3 forklifts
 - capital cost: \$1,500 per year
 - fuel savings: \$500 per year

Record Keeping Requirements

- Fleet Average fleets
- Maintain equipment information:
 - type, make, model, serial number
 - emission certification level or retrofit verification level
 - through 12/31/2015
- Maintain LPG fuel information:
- NEW! Invoice or other documentation of motor vehicle grade fuel
 - for a period of three years

Elements of the Proposal

New Engine Standards

In-Use Fleet Average

LSI Rulemaking

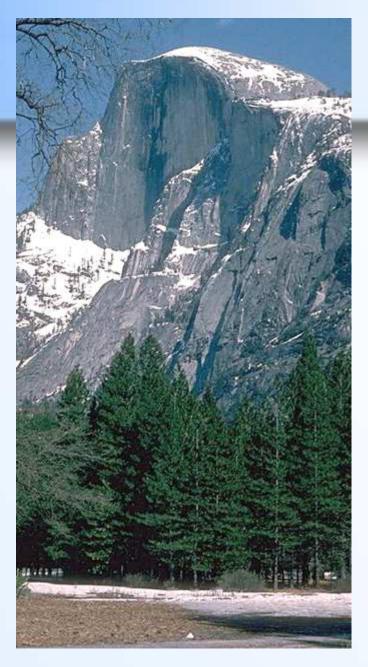
New Engine Test Procedures Retrofit Verification Procedures

Need for Retrofit Verification Protocol

- No procedure for verifying LSI retrofits
- One needed to assure quality and effectiveness of retrofit systems
- Similar to Board-approved diesel retrofit verification program
- May be eligible for Carl Moyer Program incentive grants

Verification Requirements

- Applies to manufacturers of LSI retrofit systems
- Verify emission reductions and durability
- Field demonstration
- In-use compliance testing
- Installation and performance warranty
 - 3 years or 2,500 hours
- Labeling requirement


Retrofit Verification Levels

Proposed LSI Engine Retrofit System Verification Levels

Classification	Percentage Reduction (HC+NOx)	Absolute Emissions (HC+NOx)
LSI Level 1	<u>></u> 25%	Not Applicable
LSI Level 2	<u>></u> 75%	3.0 g/bhp-hr
LSI Level 3a	<u>></u> 85%	0.5, 1.0, 1.5, 2.0, 2.5 g/bhp-hr
LSI Level 3b	Not Applicable	0.5, 1.0, 1.5, 2.0 g/bhp-hr

Estimated Benefits and Cost Effectiveness of the Proposal

Emission Benefit

Emission Reductions (HC+NOx)

Year	2010	2020
Tons per day	7.2	6.6
SIP Commitment	6.1 –13.0	3.3 to 11.1

Cost-Effectiveness

Compliance Option	Dollars per pound	
Retrofit	0-1.00	
Lower-emission	0.13	
Zero-Emission	$0-1.40^{1}$	

Cost-effectiveness based on replacement of both controlled and uncontrolled equipment.

Issues

- Agricultural fleets
 - Funding
- GSE
 - Useful life and MOU
- Rental Companies
- 2010 Emission Standards
- Fuel quality

Conclusions

- Proposal provides significant emission reductions
- Proposed controls are very cost effective
- Standards are attainable with existing technologies
- Staff recommends Board adoption with proposed modifications